5-Minute Quick Start Guide

Published on June 10, 2024

Prerequisites

  • Python 3.10+
  • pip or uv
  • OpenAI API key (or Anthropic, or local model)

Step 1: Install (30 seconds)

pip install artemis-city

Or with uv:

uv pip install artemis-city

Verify installation:

codex --version
# Output: Artemis City Codex v1.0.0

Step 2: Initialize Your First Agent System (1 minute)

codex init my-agent-system

This creates:

my-agent-system/
ā”œā”€ā”€ agent_router.yaml    # Routing configuration
ā”œā”€ā”€ kernel.json          # Kernel state file
ā”œā”€ā”€ .env                 # API keys
ā”œā”€ā”€ agents/              # Agent definitions
│   ā”œā”€ā”€ coder.yaml
│   ā”œā”€ā”€ planner.yaml
│   └── researcher.yaml
└── memory/              # Memory bus storage

Configure your API key:

cd my-agent-system
echo "OPENAI_API_KEY=your-key-here" > .env

Step 3: Run Your First Agent (30 seconds)

codex run coder "Create a Python function that calculates Fibonacci numbers"

What happens:

  1. Kernel loads routing config
  2. Routes request to coder agent
  3. Agent executes task
  4. Result saved to memory bus
  5. Output displayed

Expected output:

šŸ›ļø  Artemis City Kernel v1.0.0
šŸŽÆ Routing to agent: coder (confidence: 0.95)
⚔ Executing task...

āœ… Task completed

šŸ“„ Output:

def fibonacci(n):

"""Calculate the nth Fibonacci number."""

if n <= 1:

return n

return fibonacci(n-1) + fibonacci(n-2)


šŸ’¾ Saved to memory: memory/tasks/task_[001.md](<http://001.md>)
ā±ļø  Completed in 3.2s

Step 4: Try Multi-Agent Orchestration (2 minutes)

codex run "Plan a REST API for a todo app, then implement the create endpoint"

What happens:

  1. Kernel routes "plan" to planner agent
  2. Planner creates architecture
  3. Kernel routes "implement" to coder agent
  4. Coder builds the endpoint
  5. Both stored in memory with linked context

Step 5: Check Your Memory Bus (1 minute)

codex memory list

Output:

šŸ“š Memory Bus Contents:

1. [2025-12-05 14:23] task_001 - Fibonacci function
   Agent: coder | Status: āœ… complete

2. [2025-12-05 14:28] task_002 - REST API planning
   Agent: planner | Status: āœ… complete

3. [2025-12-05 14:29] task_003 - Create endpoint implementation
   Agent: coder | Status: āœ… complete
   Links: → task_002

View a specific memory:

codex memory show task_003

šŸŽÆ What You Just Did

āœ… Installed Artemis City

āœ… Initialized a kernel-driven agent system

āœ… Ran a single-agent task

āœ… Orchestrated multiple agents

āœ… Explored the persistent memory bus

Total time: Under 5 minutes


šŸš€ Next Steps

Customize Agent Routing

Edit agent_router.yaml:

routes:
  - pattern: "build|create|code|implement"
    agent: coder
    priority: high

  - pattern: "plan|design|architect"
    agent: planner
    priority: high

  - pattern: "research|find|search|investigate"
    agent: researcher
    priority: medium

  - pattern: ".*"  # Catch-all
    agent: planner  # Default to planning
    priority: low

Create a Custom Agent

codex agent create reviewer

Edit agents/reviewer.yaml:

name: reviewer
role: Code review and quality assurance
model: gpt-4
temperature: 0.3
system_prompt: |
  You are a senior code reviewer focused on:
  - Code quality and best practices
  - Security vulnerabilities
  - Performance optimizations
  - Documentation completeness
tools:
  - filesystem_read
  - lint_analyzer

Connect to Obsidian (User-Owned Memory)

codex memory connect obsidian /path/to/your/vault

Now all agent memory is stored in your Obsidian vault.

Add Supabase (Structured Memory)

codex memory connect supabase

Follow prompts to enter your Supabase URL and API key.


šŸ“š Learn More


šŸ¤ Join the Community

Discord: discord.gg/T2Huqg4c

GitHub Discussions: github.com/popvilla/Artemis-City/discussions


ā“ Troubleshooting

Issue: codex: command not found

Solution: Add to PATH or use:

python -m artemis_city.cli <command>

Issue: API key errors

Solution: Verify .env file:

cat .env
# Should show: OPENAI_API_KEY=sk-...

Issue: Agent not routing correctly

Solution: Test routing:

codex router test "your query here"
# Shows which agent would handle the request

šŸŽ‰ You're Ready!

You now have a kernel-driven, multi-agent system with persistent memory.

Build something amazing. Share it in Discord. We can't wait to see what you create.